Reproducibility, Documentation, and Project Workflow

Best Practices for Transparent Social Science Research

Shyam Raman

11/5/2021

Cornell University Brooks School of Public Policy

Roadmap for Today's Talk

Why Does Reproducibility Matter?

Documenting Research Decisions

My Project Workflow

Q&A For Remaining Time

Why Should I Make My Project Reproducible?

Many journals already have requirements for code & data supplements

All open-source journals and most social science journals mandate

Data-driven analyses often involve data manipulation as well

- · Researcher decisions at this stage are often not communicated in manuscript
- These same decisions often make large impacts to analysis (will get to this)

You should want to!

- Reproducibility habits make your code and workflow better
- · This also makes things easier on you, going back to a project

Reproducibility vs. Replicability

These are often conflated, but we are interested in the former

Replicability has to do with the research method

• ie. using new data, similar results can be found with same analysis

Reproducibility has to do with transparent coding and documentation

• ie. using the exact same data and analysis, identical results can be found

Both are super important!

- You want people to be able to replicate your study with any data
- · This is the definition of good science we aren't there yet

Documenting Research Decisions

We Make Mistakes - Documentation Finds Them

Research involves a lot of decision-making at the researcher level

- · Data sources, manipulation, imputation
- Outcome transformations, RHS variable creation (dummies)

Effective documentation on all these decisions prevents issues

- · Clearly cataloging differences between raw and cleaned data
- Providing rationale for variable transformations and creation

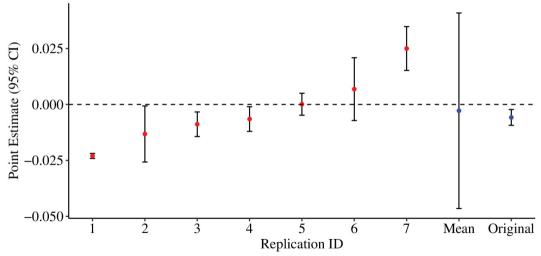
Researcher decisions drive estimates: what could go wrong?

- · A lot.
- Nick Huntington-Klein and coauthors test this (Economic Inquiry 2021)

The influence of hidden researcher decisions in applied microeconomics (2021)

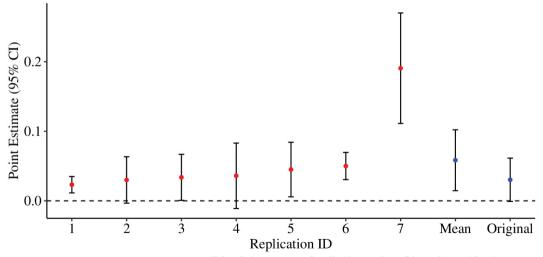
Project recruited economists to replicate papers with kits available

- Papers to replicate were broadly pulled from T5s and large contribution
- Replication code & files returned by participants to the authors

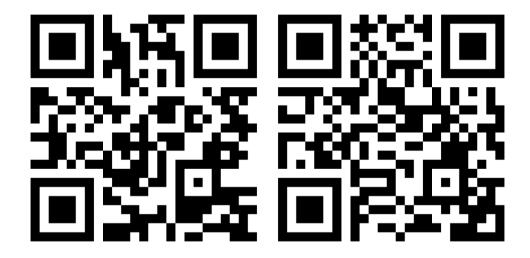

Participating economists were told to replicate and given the same instructions

- Question: Do researchers make differing decisions which create variation in results?
- · Answer: Yes.

Authors find large variation in point estimates across separate replications


- Most large differences were in data preparation and analysis decisions
 - · Hard to measure/capture when a manuscript is the final product
- No two replicators had the same sample size (for a given rep. paper)
- SD of point estimates for replications were 3-4x that of original mean standard error

Var(Replicated Results): Compulsory Schooling & Pregnancy (Black et.al 2008)


"Mean" shows mean of replications and confidence interval for that mean.
"Original" is from the original publication.

Var(Replicated Results): Health Insurance & Self Employment (Fairlie et.al 2011)

"Mean" shows mean of replications and confidence interval for that mean.
"Original" is from the original publication.

Scan for Access to (Left) The Effect; (Right) Replication Paper

My Project Workflow

What is My Goal Workflow? I want to be able to...

Come back to a project after 6 months and seamlessly restart work

- · Perpetual data storage, known file structure, updated code
- Self-contained research environments: [Rproj]
- Dynamic coding, dynamic data collection (!), version control

Compress the directory to a [.zip] and send it off for replication

- A separate user should be able to reproduce results fully
- This loops in the importance of readME files we'll get there

Perform all of my project from a single file: [0.master_run]

Allows reproduction by simply setting the home directory path

Disclaimer! Results May Vary!

This is what works for me, it may not comport to your workflow

· Most workflows, anyway, are learned over time

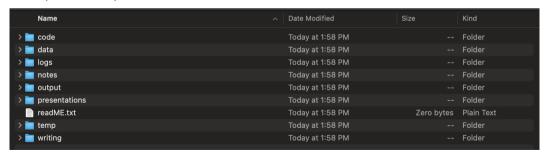
Some of what I will discuss have large learning curves

- It was worth it for me when I learned, probably wouldn't be now
- If you don't want to use Git, don't.
 - You probably should, though.

You've probably seen some (if not most) of this before

My goal is to offer options

My workflow is an accumulation of many projects and colleagues


Pick what works, but have a broad goal of reproducibility

Directory Structure

Uniform directory structures help my workflow

- · Being able to look for files in the same sub-folders
- · Having consistent data cleaning workflows across projects

A sample directory that I would use:

File Naming Conventions and Storage

Avoid leaving spaces or special characters in file names

I default to all lowercase and "_"

For data files, I try not to change anything about the source

- Names are left same (unless there are issues outlined above)
- Cleaned data are stored with my naming conventions

Rule of Thumb: If you have to reference it in code, make it easy.

- Names should be: concise, informative, and accurate
- · Avoid version #s or other extraneous details on names
 - · Sometimes this is unavoidable, I try to avoid it

The [initialize_directory] R Function

I got really tired of manually creating a directory for every project

- I tried to place an "empty" directory on my desktop
 - Forgot about it immediately

I wrote a function in R which creates the directory from before

• To run it, all you need to do is pass:

initialize_directory(root_path)

This is available on my github, but I just save the function

I use this every time, it also creates the [root_path]

ReadME File & Template

The [initialize_directory] function creates [readME.txt]

- · Populate this with your documentation
- I fill this once the project analysis is done

Many templates exist for social science research readME files

Most are a skeleton for (roughly) the same info

All readME files need (based on most journal reqs):

- Details on data retrieval and storage
- Full walkthrough of code from start to finish
 - · Quick description of each file: what, which data, how
- Details on how a replicator would use the underlying code

Data Documentation

The [initialize_directory] function ALSO creates [data_documentation.txt]

- · This file is meant to hold all info relating to data
- I populate this as data comes in makes life easier

Data documentation is (arguably) even more important

- Where does it come from? Is a web source updated consistently?
- I include (at min) a link to source, variables, and time captured
 - Just passing the [desc] command in STATA will give almost all info

Document how your final analysis file is composed/created

- Note the specific manipulations and imputations and respective code
- Just providing code is not enough, justify your decisions here

Version Control vs Cloud Storage

A sad but necessary note that Box/GDrive/DropBox \neq Version Control

• This is okay! Cloud storage is often a really good option.

Pro/Con: Version Control (Github/Gitlab)

- · Pro: track changes in code, great for many authors, link to Overleaf
- · Con: learning curve (steep), decentralized data storage (annoying)

Pro/Con: Cloud Storage (Box/GDrive/DropBox)

- Pro: it's easy, you already use it, syncs to cloud automatically
- · Con: can't see specific code changes, no recovery for local deletions

Dynamic Coding for Replicability

Dynamic coding is a fancy name and is implemented easily

· Basically, we want all our main code to be path-agnostic

Path-agnostic code uses \$global values or project spaces

- STATA: Set a [root_path] and create macros for all subdirectories
- R: Create an [.Rproj] file, sit back, and relax

Why do this? Isn't a [root_path] easy enough to paste in?

- Hypothetical: You move your project to CISER from local drive.
- · Problem: Your filepaths now need to be changed, in every script
- · Solution: You dynamically code your paths, only change one line
 - Where? We create and edit the [0.master_run] file

The [0.master_run] File - Setup

```
// FILE:
// 0.master_program.do
// DESCRIPTION:
// THIS FILE RUNS ALL OTHER PROGRAMS FOR OUR PROJECT
    // Change these for your computer
       // Shyam
            global box "~/Box"
        // Coleman
            //global box "C:\Users\CDRAKE\Box Sync"
    // Set your file paths.
        global directory
                           "Shox/RMLarcos" // Root folder directory that contains the subfolders for constructing the dataset and estimation
                          "$directory/data" // Path for data used in analysis
        global data path
                           "$data path/data raw" // Path for raw data
        global rawdir
        global temp_path
                          "$directory/temp" // Path for temp folder
        global scripts
                           "sdirectory/code" // Path for running the scripts to create tables and figures
        global figure path "$directory/output/figures" // Path for figures output
        global table path
                          "$directory/output/tables" // Path for tables output
                           "$directory/logs" // Path for log files
        global logs
```

The [0.master_run] File - Run Scripts

```
// Create the data
    // Clean ARCOS drug files
        do "$scripts/1.build data for analysis/1.1.cleanARCOS.do"
    // Clean OPTIC covariate data
        do "$scripts/1.build_data_for_analysis/1.2.cleanOPTIC.do"
    // Clean dispensary data
        do "$scripts/1.build data for analysis/1.3.cleanDISPENSARIES.do"
    // Clean AHRF data
       do "$scripts/1.build data for analysis/1.4.cleanAHRF.do"
    // Merge all this data together
        do "$scripts/1.build data for analysis/1.7.mergeDATA.do"
// Run Analysis
    // Run base analysis
        do "$scripts/3.analysis/3.1.runRegressions.do"
```

The Pitfall of R: Package Requirements and Version

STATA has R beat squarely when it comes to package consistency

- You frequently need multiple packages to do work in R
- Making sure those packages are available to replicators is important!

R packages (thankfully) are easy enough to install and load

- Problem: doing this is verbose and unnecessary if already installed
- Solution: the [pacman] package's [p_load] function

The [pacman::p_load] function checks if a package is installed and if...

- TRUE: loads the package (equiv to [library] command in R)
- FALSE: installs and then loads the package

Sublime Text & STATA Integration

My first coding exposure was in R, so STATA feels worse

- · Please don't come for me
- I just really missed autocompletion on everything

Enter: The Sublime Text/STATA Integration

- Sublime Text is a (free) IDE with multiple build modes
 - Also has package control and user written packages
- The integration is easy, free, and has autocomplete

This is not necessary, but it 100% is for me

- Building from ST also shows the underlying file structure
- You can reference live file paths from within a DO file

Zotero, Better BiBTeX, and LaTeX integration

Manuscript writing is arguably the most miserable part of research

• For me, this was the case because I absolutely hated formatting citations

LaTeX has its drawbacks, but it handles citations so smoothly

- · A [.bib] file can be linked to a document and contain all necessary citation info
 - The [.bib] file can be automatically created and updated by Zotero (free)
- \cdot My setup: Zotero folder with all relevant papers ightarrow [.bib] file export

But wait! I have a new citation and need to add to the [.bib] file.

- · Problem: you don't want to create a new [.bib] file every time (this would suck)
- · Solution: Better BiBTeX integration with Zotero and Project-Specific Folders
 - Create a perpetual export using BBT from Zotero project folder to project directory

My Project Setup Procedure

Identify Question, Write a Research Sketch, Create Directory

- Use the [initialize_directory] function, add your sketch
- Add this folder to Git/Box/GDrive/DropBox

Gather data, populate documentation files, create analysis file

- Collect data dynamically (where possible) using API/URL downloads
- Store stable raw data in the [data/raw] folder
- · Generate analysis data file, fill data documentation

Run analysis, output results within directory, write manuscript

- Analysis ideally could be run via the [0.master_run] file
- Output should be created and exported from script (makes life easier)
- · Write manuscript in Sublime with Zotero integration auto citations

Thank You! Questions?