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• Lead exposure adversely affects child
health and is a major public health
concern.

• We combined lead test result data over
many states to predict lead exposure risk.

• Lead exposure risk is highest in the
Northeast and Midwest US ZIP Codes.

• Percent of houses built before 1940 and
median home value are most related
to risk.

• The lead exposure risk score can be used
for public health intervention efforts.
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Lead risk score predicted for ZIP Codes from a Bayesian hierarchical model based on blood lead testing data and
socioeconomic status variables in the United States.
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Lead exposure adversely affects child health and continues to be a major public health concern in the United
States (US). Lead exposure risk has been linked with older housing and households in poverty, but more studies
of neighborhood socioeconomic status (SES) and lead exposure risk over large and diverse geographic areas are
needed. In this paper, we combined lead test result data over many states for a majority of the US ZIP Codes in
order to estimate its association with many SES variables and predict lead exposure risk in all populated ZIP
Codes in the US. The methods used for estimation and prediction of lead risk included the Vox lead exposure
risk score, random forest, weighted quantile sum (WQS) regression, and a Bayesian SES indexmodel. The results
showed that the Bayesian index model had the best overall performance for modeling elevated blood lead level
(EBLL) risk and therefore was used to create a lead exposure risk score for US ZIP Codes. There was a statistically
significant association between EBLL risk and the SES index and the most important SES variables for explaining
EBLL riskwere percentage of houses built before 1940 andmedian homevalue.Whenmapping the lead exposure
risk scores, there was a clear pattern of elevated risk in the Northeast and Midwest, but areas in the South and
Southwest regions of the US also had high risk. In summary, the Bayesian index model was an effective method
for modeling EBLL risk associated with neighborhood deprivation while accounting for additional heterogeneity
in risk using lead test result data covering amajority of the US. The resulting lead exposure risk score can be used
for targeting public health intervention efforts.
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1. Introduction

Lead (Pb) is a ubiquitous and harmful environmental toxin that
causes adverse health effects in children, particularly neurological and
neurobehavioral deficits, lower IQ, slowed growth, and anemia (U.S.
Department of Health and Human Services, P. H. S, 2007; Canfield
et al., 2003; Chiodo et al., 2004; Grandjean and Landrigan, 2014;
Lanphear et al., 2000; Lidsky and Schneider, 2003; Miranda et al.,
2007; Nelson et al., 2015; Schnaas et al., 2000; Tellez-Rojo et al., 2006;
Mielke et al., 1997; Mielke et al., 2017; Mielke et al., 2016). Lead can
be ingested from a variety of sources including lead-based paint, house-
hold dust containing lead paint, soil, drinking water, and food (Mielke
et al., 1997). Although there is no safe blood lead threshold in children,
the U.S. Centers for Disease Control and Prevention recommends taking
public health actions to reduce future lead exposure for children with
blood lead levels (BLLs) at or above 5 μg/dL (Centers for Disease
Control and Prevention (CDC), 2012; Wengrovitz et al., 2009). During
2007–2010, the percentage of children aged 1–5 years with BLLs at or
above 5 μg/dL was 2.6%, or an estimated 535,000 children in the U.S.
with elevated BLLs (EBLLs) (Centers for Disease Control and
Prevention (CDC), 2013). Despite efforts by state and local health de-
partments to reduce BLLs in children, theHealthy People 2020 objective
to reduce BLLs to an average of 1.6 μg/dL is not likely to be achieved in
the near future. (Centers for Disease Control and Prevention (CDC),
2004; US Department of Health and Human Services, 2012). This may
be due in part to thedifficulty in identifyingwhere to target remediation
and prevention efforts because it is not feasible to conduct surveillance
that requires obtaining blood from children in a population-based
manner.

Prior studies have found evidence that EBLL risk is elevated among
persons living in poverty and in older and substandard housing (A
Targeted Approach to Blood Lead Screening in Children, Washington State
2015 Expert Panel Recommendations, 2016; Jacobs et al., 2002;
Raymond et al., 2014). Such housing is often inhabited by racial minor-
ities and socioeconomically disadvantaged persons (Campanella and
Mielke, 2008; Leech et al., 2016). Because of these associations, socio-
economic measures of deprivation (e.g., Gini coefficient (Gini, 1997),
population below the federal poverty level (U.S. Census Bureau, 2017),
or concentrated disadvantage (Sampson et al., 1997)) have been used
to estimate risk of EBLLs for a variety of geographic units (e.g., block
groups, census tracts, ZIP Codes (Boutwell et al., 2016; Hanna-Attisha
et al., 2003; Krieger et al., 2003; Aelion et al., 2013; Carrel et al.,
2017)). However, the risk scores and indices that have stemmed from
these measures often only use a small subset of area-level covariates,
are for only one US state, and also rely upon determinants that have
been linked to lead exposure, not actual blood lead test results (A
Targeted Approach to Blood Lead Screening in Children, Washington State
2015 Expert Panel Recommendations, 2016; Carrel et al., 2017; Jones
et al., 2010; Moody and Grady, 2017; Vox Lead Exposure Risk., n.d.;
Frostenson and Kliff, 2016). This results in lead exposure risk being
portrayed as a function of socioeconomic status (SES) without environ-
mental toxin or serological sampling to substantiate risk. An example of
this is the Vox lead exposure risk score (Frostenson and Kliff, 2016),
which uses poverty and housing age to construct a risk score for census
tracts in the United States (US), but does not use lead test data for the
census tracts.

Despite these attempts to identify areas of EBLLs through risk map-
ping and estimation techniques based on utilizing sociodemographic
characteristics and housing age, predicting lead exposure across large
areas (i.e., many states) may be inaccurate largely because it has been
done without area lead test data. Further complicating the matter,
lead presence in topsoil has been shown to be naturally decreasing in
some rural areas while remaining vigilant in urban centers. However,
geographic lead exposure risk based solely on topsoil has not been di-
rectly linked to serologically elevated blood lead levels in children and
is also not directly associated with known predictors such as age of
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the housing stock or income (Mielke et al., 1997; Mielke et al., 2017).
Importantly, topsoil lead presence is strongly predicted by minority
race (Mielke et al., 2020). Recent studies have further estimated the as-
sociation of SES variableswith EBLL risk (Wheeler et al., 2019a;Wheeler
et al., 2019b) in census tracts using lead test result data and weighted
quantile sum (WQS) and Bayesian index regression models, but these
efforts have been only for single states (e.g., Minnesota, Maryland).
Given the potential impact for predicting comprehensive lead exposure
risk across small areal units, the objective of this study was to use these
methodswith positive lead serological test results combined overmany
states in order to predict lead exposure risk across the entire United
States at a granular areal level (e.g., ZIP Codes). In this paper, we com-
pared thesemethodswith the Vox lead exposure risk score and random
forest to estimate and predict EBLL risk across ZIP Codes in the US using
many SES variables potentially related to lead exposure risk. Ultimately,
this study produced a lead exposure risk score for all populated ZIP
Codes in the US from a comprehensive set of known lead predictors
using the best method evaluated.

2. Material and methods

2.1. Data

2.1.1. EBLL data
The blood lead test data used for the outcome variable were pro-

vided by Reuters (Pell and Schneyer, 2017), which initially obtained
the data from individual state health departments. The number of
tests ty and elevated lead tests ey for area y were reported. An elevated
test was defined as a reading greater than 5 μg/dL. Certain states sup-
pressed small numbers (<5) of tests performed or elevated lead read-
ings for privacy reasons. For these records, we performed a single
imputation of test or elevated reading counts. The imputation was
within the range specified by the state for count suppression. For exam-
ple, if a state suppressed the true number of EBLL counts in an area as<5
but not 0, then the imputation of the area's EBLL countwas from the dis-
crete set {1, 2, 3, 4} with equal probability given to each number. The
proportion of imputed counts on the ZIP, census tract, and county levels
was 41%, 36%, and 43%, respectively. To construct the outcome variable,
we aggregated area-level data over as many years as were reported be-
tween 2005 and 2015 and calculated the proportion of EBLLs in the area,
py ¼ ey

ty
. The spatial scale and years of blood lead testing data for each

state are listed in the supplemental material (Table S1). States reported
lead testing data either on the ZIP Code (23 states), county (3 states), or
census tract (6 states) level. The states included and their level of
reporting are shown in Fig. 1. Much of the United States was covered
at the ZIP Code level, with the exception of a cluster of states in the
western region of the country that did not report and a cluster in the
Midwest and Northeast that did not report at the ZIP level. Lead test
data were present for 16,483 of the 31,643 total ZIP Codes in the
United States, representing 52% of USZIP codes. The goalwas to produce
lead risk scores for every ZIP Code in theUS, so predictionwas necessary
for the states that did not report blood lead test data at the ZIP Code
level. To accomplish this goal, we compared the fit of several models
to determine which one best predicted EBLL risk across ZIP Codes, and
then used this model with all observed data to predict EBLL risk across
the entire country.

2.1.2. Demographic data
The SES variables used to construct the SES indices come were

5-year estimates of area-level variables from the 2007–2011
American Community Survey (ACS), an ongoing survey conducted
by the U.S. Census Bureau. These variables describe an area's housing
stock and the population's economic status, demographic characteristics,
anduse of governmental assistance programs (Table 1) andwere selected
for consideration based on their association with EBLLs in the literature



Fig. 1. Coverage of the United States by reported lead test data with shading according to spatial scale of test data.
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and use in previous SES indices for EBLL risk (Wheeler et al., 2019a;
Wheeler et al., 2019b).

Themeans and standard deviations of the ACS variables for all the ZIP
Codes and the ZIP Codes with blood testing data and without blood test-
ing data show that overall the means of the variables were similar be-
tween the ZIP Codes with and without blood testing data (Table 1). Two
Table 1
American Community Survey variables (2007–2011) considered in socioeconomic status indic

Variable Overall (n = 31,643

Structures built pre-1940 (%) 19.8 (17.7)
Structures built 1940–1949 (%) 5.8 (5.6)
Structures built 1950–1959 (%) 9.7 (8.1)
Structures built 1960–1969 (%) 10.0 (6.9)
Structures built 1970–1979 (%) 16.1 (8.9)
Structures built 1980–1989 (%) 13.1 (8.8)
Structures built 1990–1999 (%) 14.0 (9.7)
Structures built 2000–2004 (%) 7.3 (7.3)
Structures built post-2004 (%) 4.2 (5.6)
Median Household Income (USD) 51,449.1 (22,050.9)
Median family income (USD) 61,622.7 (25,940.9)
Gini coefficient for income inequality 0.4 (0.1)
Black or African-American residents (%) 7.5 (15.9)
Female-headed households (%) 8.7 (7.7)
Residents with less than high school degree (%) 15.2 (10.6)
Households below federal poverty line (%) 14.3 (10.8)
Residents receiving Social Security income benefits (%) 33.2 (12.2)
Residents on public Assistance (%) 2.4 (3.3)
Residents receiving food stamps/SNAP (%) 10.5 (9.5)
Residents using public health insurance (%) 33.0 (12.3)
Residents who are unemployed (%) 8.3 (6.4)
Vacant structures (%) 17.0 (14.9)
Households renting their residence (%) 25.0 (15.6)

SNAP = Supplemental Nutrition Assistance Program.

3

exceptions are percent Black population and percent structures built be-
fore 1940, where the percent of the Black population was 10.2% in the
blood testing set and 4.6% in the set without testing data and the percent
of structures built before 1940 was 17.4% in the blood testing set and
22.4% in the setwithout testing data. Noting these descriptive differences,
it was important to adjust for these variables in the SES index.
es with means (standard deviations) by ZIP codes reporting of blood testing data.

) Testing data (n = 16,483) No testing data (n = 15,160)

17.4 (16.9) 22.4 (18.3)
5.7 (5.4) 5.9 (5.8)
10.0 (8.4) 9.3 (7.7)
10.5 (6.8) 9.4 (6.8)
15.8 (8.4) 16.5 (9.3)
13.7 (8.7) 12.5 (8.9)
14.4 (9.8) 13.5 (9.6)
7.8 (7.5) 6.8 (7.0)
4.7 (6.0) 3.7 (5.0)
51,642.7 (22,184.4) 51,238.6 (21,903.6)
61,745.2 (25,869.8) 61,489.6 (26,018.2)
0.4 (0.1) 0.4 (0.1)
10.2 (17.8) 4.6 (12.9)
9.3 (7.5) 8.1 (7.8)
16.2 (10.5) 14.1 (10.5)
14.6 (10.3) 14.0 (11.4)
32.9 (11.6) 33.5 (12.9)
2.2 (2.7) 2.6 (3.8)
10.8 (8.8) 10.2 (10.2)
32.8 (11.5) 33.2 (13.0)
8.5 (5.8) 8.1 (7.1)
16.5 (13.5) 17.6 (16.2)
25.4 (15.6) 24.6 (15.6)
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2.2. Statistical modeling

Initial exploration of the lead test dataset on the ZIP Code level
(n = 16,483 observations) was done by calculating Spearman corre-
lations between SES variables and the proportion of EBLLs. This was
both to assess the strength and direction of their relationship in order to
determine the structureof the indices.Medianhousehold incomeandme-
dian family income were inverted by subtracting them from their maxi-
mum value in the dataset so that all area-level variables would have the
same positive direction of association with elevated lead risk. Exploration
of the distribution of the proportion of EBLLs revealed that a natural log
transformation of the proportion of EBLLs plus a constant of 1 had an ap-
proximately normally distributed outcome for modeling. The constant
was added before the log transformation due to the presence of zero pro-
portions of EBLLs. This transformed outcome was used in all models.

The following methods were used for modeling proportion of EBLLs:
WQS regression, random forests, and Bayesian indexmodels.WQS regres-
sion and Bayesian indexmodelswere selected due to their previous use in
modeling EBLL risk and estimating SES indices (Wheeler et al., 2019a;
Wheeler et al., 2019b). Previous research has demonstrated effective per-
formance of WQS regression in modeling sets of correlated variables
(Carrico et al., 2015). Random forest was used as a comparison method
due to its established performance as a predictive model (Wheeler et al.,
2015).When fitting themodels, differing sizes of the SES index and differ-
ent spatial scales of the data (e.g. census tract, county) were considered.
The Vox lead exposure risk score was also calculated as a comparison
(Vox Lead Exposure Risk., n.d.; Frostenson and Kliff, 2016) (details below).

To evaluate the estimation and prediction performance of the differ-
ent models and select a final model, the observed ZIP Code data were
randomly split into a 70% training set (n=11,539) and a 30% prediction
set (n = 4944). All ZIP-level models were fitted using the 70% training
set and thenwere used to predict in the 30% prediction set. ForWQS re-
gression models, the total training set were separated into a 70% set for
estimating the SES index weights (training) and 30% for estimating the
finalmodel parameters (testing) due to the two-step estimation routine
of WQS regression. Datasets for models adding 1) county, 2) census
tract, and 3) county and census tract lead test data together were also
split according to these rules. Thus, each WQS model had a different
number of observations in the training and testing sets. For random for-
ests and the Bayesian index model, no such split of the training set was
necessary and all trainingdatawere used to fit themodels. Counts of ob-
servations in each of the data sets are given in Table 2.

2.2.1. Vox lead exposure risk score
In 2016, Vox implemented a lead risk score map for census tracts in

the United States based on methodology from the Washington State
Department of Health (A Targeted Approach to Blood Lead Screening in
Children, Washington State 2015 Expert Panel Recommendations, 2016;
Vox Lead Exposure Risk., n.d.; Frostenson and Kliff, 2016). They pro-
duced a weighted average of two variables for each census tract: the
age of the housing stock and the percentage of the population living in
poverty. The housing stock variable gave large weight to houses built
before 1940, slightly less weight to those built between 1940 and
1959 and increasingly smaller weight to homes built after 1960. The
weights for housing age were 0.68 before 1940, 0.43 in 1940–1959,
0.08 in 1960–1979, and 0.03 in 1980–1999 (A Targeted Approach to
Table 2
Observations counts by model.

Model Training Testing Prediction

WQS: ZIP 8077 3462 4944
WQS: ZIP + County 11,650 4993 4944
WQS: ZIP + Census Tract 12,691 5440 4944
WQS: ZIP + County + Census Tract 12,803 5488 4944
Random Forest: ZIP 11,539 4944
Bayesian Index Model: ZIP 11,539 4944
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Blood Lead Screening in Children, Washington State 2015 Expert Panel Rec-
ommendations, 2016; Vox Lead Exposure Risk., n.d.; Frostenson and
Kliff, 2016). These weights represent the percent of housing units with
leadhazards by timeperiod and come from aprevious study of a nation-
ally representative sample examining lead risk in homes (Wheeler et al.,
2019b). The housing age component of the lead exposure risk score is
calculated for each area by summing the number of houses built times
the weight over the time periods. The poverty variable is defined as
the percent of households living in poverty (Vox Lead Exposure Risk.,
n.d.). The housing age component and poverty component are com-
bined into a weighted sum using weights of 0.58 for age of housing
and 0.42 for poverty, and then converted into deciles to represent a
lead exposure risk score ranging from 1 to 10. The component weights
were derived from differences in mean blood lead levels between chil-
dren at low and high categories of each variable in a previous study
using National Health and Nutrition Examination Survey (NHANES)
data (Raymond et al., 2014; Frieden, 2014). Notably, this approach has
not been validated on actual lead test data across the country and there-
fore its ability to predict elevated blood lead levels is unknown. The Vox
lead exposure risk scores for census tracts in the United States are pub-
licly available in awebmap application (Frostenson andKliff, 2016).We
calculated the Vox score as a validation process and to provide a base-
line comparison to our models.

2.2.2. Weighted quantile sum regression
WQS regression uses weighted quantiles of variables in an index to

accommodate different scales of variables, de-correlate the variables,
andmitigate some uncertainty in ACS estimation of variables. In this ap-
plication of WQS, deciles of SES variables and B = 200 bootstrap sam-
ples of the WQS training data were used to estimate the index
weights. Using bootstrap sampling when estimating index weights has
been shown to increase sensitivity in detecting important variables in
the index (Carrico et al., 2015). In a given bootstrap sample, with
c = 1, …, C neighborhood-level variables each separated into q = 0,
1, …, 9 quantiles, the WQS model was

log p yþ 1ð Þ ¼ β0 þ β1 ∑C
c¼1wcqc;y

� �
;wherewc ≥0∀c and∑C

c¼1wc ¼ 1

Non-linear optimization was used to estimate the index weights in
each bootstrap sample with the solnp library (Ghalanos and Theussl,
2015) in the R computing environment. The final weights were a
weighted average of the bootstrap sample estimates, with estimates

weighted by the index's test statistic tb as wc ¼ ∑B
b¼1wb,ctb
∑B

b¼1tb
. The WQS

index was constructed using these weight estimates and then its signif-
icance was evaluated through the parameter β1 in the testing set.

To determinewhether incorporating lead test data fromdifferent spa-
tial scales (i.e., census tract and county)would improve predictive perfor-
mance, models were fitted incorporating lead test data on 1) only the ZIP
level, 2) on the ZIP and county level, 3) on the ZIP and census tract level,
and 4) the ZIP, county, and census tract-level with C=10 variables. This
initial set of 10 variables consisted of variables having higher Spearman
correlations with EBLL proportion in univariate exploratory analyses.
Lead test data from states reporting on the ZIP level were common to
each of these four models; they differed only in their inclusion of lead
test data on the county and/or census tract levels. The prediction set,
consisting only of testing data on the ZIP level, was common to allmodels.
To see if a more parsimonious or more complex SES index model would
improve prediction of EBLL risk, we also fitted the best spatial scale
model with a smaller (C= 7) and larger (C= 15) index.

2.2.3. Random forest
Random forests were used tomodel the proportion of elevated tests

in a ZIP Code by bootstrapping the data, building regression trees, and
aggregating predictions over the trees, each of which was split accord-
ing to the value of several variables. The number of variables and spatial



Table 3
ComparingWQSmodels in theprediction set according to Spearman's correlation andme-
dian absolute residual (MAR).

Quantity Z Z + C Z + T Z + C + T

Correlation 0.3306 0.3306 0.3235 0.3237
MAR 0.0617 0.0625 0.0631 0.0660

Note: Z = ZIP Code, C = County, T = Census Tract.

Table 4
Prediction set performance of ZIP-only WQS models according to Spearman's correlation
and median absolute residual (MAR) along with the estimated SES index weights and re-
gression coefficients.

Quantity C = 7 C = 10 C = 15

Correlation 0.3308 0.3306 0.3303
MAR 0.0616 0.0617 0.0618
Index Coefficient 0.0191 0.0191 0.0196
Index P-value < 0.001 < 0.001 < 0.001
Structures Pre-1940% 0.79 0.79 0.77
Structures 1940–1949% 0.01 0.01
Median House Value, Inv 0.17 0.16 0.14
Median Household Income, Inv 0.00 0.00 0.00
Gini Coefficient 0.01 0.01 0.00
Black % 0.02 0.01 0.00
Supplemental Security Income % 0.01 0.00
Food Stamps % 0.00 0.00 0.00
Public Insurance % 0.01 0.01 0.00
Unemployed % 0.00 0.00
Female Households % 0.04
< HS Graduate % 0.00
Poverty % 0.00
Vacant Structures % 0.03
Renters % 0.00
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scale of data were taken from the most predictive WQS regression
model. Each tree in the forest also selected fromonly a subset of possible
variables at each split in order to increase variation between the individ-
ual trees. Random forestswere fitted over a grid of hyperparameters, in-
cluding number of variables to try at each split in the tree (2–7),
minimal node size (2–7), and number of trees in the forest (300, 400,
500, 600). Random forests were fit in R using the randomForest (Liaw
and Wiener, 2002) and ranger (Wright and Ziegler, 2017) packages.

2.2.4. Bayesian index model
A Bayesian index model was used for the mean of the natural log of

the proportion of elevated blood lead tests. The transformed outcome
followed a normal distribution as log(py +1) ~ Normal(μy,τp) with pre-
cision τp ¼ 1

σ2
p
and σp ~ Uniform(0,100). The mean was modeled as

μy ¼ β0 þ β1 ∑C
c¼1wcqc,y

� �
þ uy,

with a neighborhood SES index similar to theWQSmodels but also incor-
porating an unstructured random effect uy. The prior for the unstructured
random effect was uy ~Normal(0,τu) with precision τu ¼ 1

σ2
u
andσu ~Uni-

form(0,10). The intercept β0 had an improper flat prior, and the index co-
efficient had prior β1 ~ Normal(0,τ1) with precision τ1 ¼ 1

σ2
1
and

σ1 ~ Uniform(0,100). The weights w1, …, wC had a Dirichlet(α1,…,αC)
prior to ensure that weights would be positive and sum to unity. To pre-
dict EBLL proportions for ZIP Codes without reported test data, a sample
was drawn from the posterior predictive distribution for the mean, using
information from the observed data to estimate model parameters.

Markov ChainMonte Carlo (MCMC)methods were used to estimate
model parameters, with one chain consisting of 20,000 iterations and a
10,000-iteration burn-in period, and convergence was assessed using
Geweke's criterion. We fit Bayesian models in WinBUGS version 1.4.3
using the R2WinBUGS package (J. Stat. Softw., n.d.) and completed all
other analyses in R version 3.6.1.

2.2.5. Model comparison
Model performance was compared using two criteria. The primary

evaluation criterion was the correlation between the estimated and ob-
served EBLL proportions in both the estimation (training/testing) set
and the prediction set. The secondary evaluation criterionwas themedian
absolute residual (MAR) between estimated and observed EBLL propor-
tions in the prediction set in order to understand the scale of the models'
predictive ability. While performance on the prediction set was impor-
tant, performance in the estimation sets was also considered because
the estimation set comprised a majority of the lead test data, and the
goal was to accurately reflect EBLL risk across as much of the country as
possible. The best model was determined according to the correlation of
estimates with observed EBLL proportions and the MAR. This model
was then applied to all ZIP Codes in order to provide a lead risk assess-
ment for the entire United States, including those states that did not re-
port lead test data. To communicate risk in a straightforward manner
similar to the Vox lead exposure score, deciles of risk based on the esti-
mated/predicted EBLL proportions were used for mapping results.

3. Results

The average proportion of EBLLs in an area was 0.12, with a standard
deviation of 0.19, suggesting a large positive skew in the distribution of
EBLLs, with a relatively small number of areas having higher proportions
of EBLLs. The large positive skew was corrected with the transformation
mentioned above. The results from theWQSmodels comparing different
spatial scales of lead test data on the common prediction set are shown in
Table 3. Models performed comparably, having similar correlations be-
tween estimated and observed EBLL proportions in the prediction set, as
well as nearly identical MAR in such comparisons. However, the model
with only ZIP-level lead test data had the highest correlation and lowest
5

MAR. Thus, we retained the ZIP-level model for subsequent WQS regres-
sion models, as well as random forest and Bayesian index models.

The results of WQS models with different index sizes modeled only
at the ZIP Code level are shown in Table 4. These models performed
very similarly, with correlations of approximately 0.33 between esti-
mated and observed EBLL proportions and MARs of 0.06 in the predic-
tion set. The model with C = 7 variables had the highest correlation,
suggesting a more parsimonious set of area-level variables was prefera-
ble in predicting EBLL risk. Estimated weights for the variables across
these three models are listed in Table 4, also showing the importance
of structures built pre-1940 and median household value with EBLL
risk. These two variables make up most of the weights in the SES
index. Notably, almost no weight is given to houses built in
1940–1949, meaning that percent of homes built before 1940 account
for the housing age effect. In all WQS models, there was a significant
positive association between the SES index and EBLL risk, according to
the index coefficient and p-values (Table 4).

The random forest and Bayesian indexmodel achieved higher correla-
tionswith EBLL proportions than theWQSmodels on the estimation data
and performed comparably on the prediction set (Table 5). The best ran-
dom forest model randomly sampled two variables at each split, had a
minimumsize of six terminal nodes, and contained 500 trees in the forest.
The Bayesian index model converged according to Geweke's diagnostic.
The Bayesian index model had the highest overall correlation with all
the data and was subsequently applied to all ZIP Codes in the United
States. The variables with the highest weights in the Bayesian index
model were structures built pre-1940 (0.893) and median house value
(0.105). These variables composed almost the entirety of the index
weight. The index effect in this model was highly significant

(cβ1 ¼ 0:022, 95%credible interval 0:020, 0:024ð Þ and positively related
with EBLL risk. Although the Bayesian model performed comparably to
othermodels on the prediction set, itwas superior in estimating EBLL pro-
portions in the estimation set (training and testing combined). Thus, it



Table 5
Performance of models in estimation set, prediction set, and all data combined.

Model Variables Correlation:
Prediction

Correlation:
Test

Correlation:
Overall

Vox 2 0.25 0.23 0.24
WQS: Z 10 0.33 0.30 0.32
WQS: Z + C 10 0.33 0.30 0.32
WQS: Z + T 10 0.32 0.25 0.28
WQS: Z + C
+ T

10 0.32 0.23 0.28

WQS: Z 7 0.33 0.33 0.33
WQS: Z 10 0.33 0.30 0.32
WQS: Z 15 0.33 0.33 0.33
Random Forest 7 0.34 0.95a 0.77
Bayesian Index 7 0.33 0.99a 0.85

a Calculated for training and testing sets combined.

D.C. Wheeler, J. Boyle, S. Raman et al. Science of the Total Environment 769 (2021) 145237
was best able to quantify EBLL risk across ZIP Codes in the estimation and
prediction sets. The Vox lead exposure risk score performed the worst in
all instances, which shows the limitation of this overly simplistic ap-
proach to calculating the lead exposure risk score, as well as the benefit
in using lead test result data to fitmodels. The correlation of the estimates
and observed values in all the data combined was much higher with the
Bayesian index model (0.85) than with the Vox score (0.24).

Afterfitting theBayesian indexmodel to all the observed lead test data
and predicting EBLL proportions for those ZIP Codeswithout reported test
data, we mapped the deciles of risk based on the estimated/predicted
EBLL proportions. The lead risk scores for ZIP Codes (Fig. 2) across the
United States shows a clear spatial pattern with highest risk generally
found across the rust belt in the Northeast and Midwest and lowest risk
across the South and Southwest. However, there are also ZIP Codes of
highest risk in parts of the southwest, including in NewMexico, Arizona,
Texas, Utah, Nevada, and California. A closer look at the Mid-Atlantic
region (Fig. 3) shows variation in risk both across and within states,
Fig. 2. Lead risk score for ZIP Codes in the United St
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with lower risk in Virginia and Maryland compared with West Virginia,
Ohio, and Pennsylvania. The high risk in urban areas and lower risk in
surrounding suburban areas is evident inWashington, DC and Baltimore,
MD. To better visualize lead risk in ZIP Codes, we have created awebmap
application that allows for interactive exploration of these predicted lead
risk scores. This tool is available free online (Boyle, 2020).

4. Discussion

This study investigated the feasibility and efficacy of predictivemodel-
ing for lead exposure risk related to neighborhood SES variables across
the United States. We combined lead test result data from many states
to enable estimating and predicting lead exposure risk for all populated
ZIP Codes in the United States to create an easily understandable risk
score.We compared the performance of several differentmethods includ-
ing the Vox lead exposure risk score, random forest, WQS regression, and
Bayesian index models for estimating and predicting elevated blood lead
level risk. The results showed that the Bayesian index model performed
the best, followed fairly closely by random forest. The Vox lead exposure
risk score performed the worst. Among the SES variables considered, we
found that percent of homes built before 1940 was the most important,
followed by median house value. The other SES variables received little
weight in the indexmodel. There were very clear patterns in the lead ex-
posure risk score, with the highest values found in the rust belt of the US
and lower values in the south and southwest. There were also clusters of
high risk in cities such as Baltimore andWashington, DC with low risk in
the surrounding suburban areas.

We approached this study with a major asset of having lead test re-
sult data for the majority of ZIP Codes in the US. The processing and
combination of test data from many states is a major strength of this
study. In fact, this is the first study to use the novel approach of combin-
ing lead test result data across many states to estimate EBLL risk. Previ-
ouswork, such as the Vox lead exposure risk score (Frostenson andKliff,
ates estimated from the Bayesian index model.



Fig. 3. Lead risk score for ZIP Codes in the United States centered on the Mid-Atlantic region.
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2016), has used census data to construct a risk score but did not use
geographical-referenced lead test data, nor did it rigorously estimate
the weights for the housing age and poverty variables that are the
basis for the risk score. Our previous work did use lead test result data
to estimate local lead exposure risk explained by SES variables, but
these studies were for single states (Minnesota and Maryland
(Wheeler et al., 2019a; Wheeler et al., 2019b)) and no prediction of
risk was necessary. In the present study, we borrowed information
from the areas with observed test data to predict risk in areas without
reported lead test data. We also allowed for heterogeneity in risk be-
yond what the SES index could explain in our Bayesian index model.
These model approaches enabled the Bayesian index model to outper-
form the Vox lead exposure risk score and provide a more effective
means of calculating lead risk for ZIP Codes. In addition, we determined
which area SES variables are related to lead exposure risk, most notably
houses build before 1940 and home value.

Limitations exist for our study, as the data used in ourmodels are sub-
ject to inherent bias. The data were collected by state health departments
and are generally non-random. Due to this, children seen as having a
higher risk for having elevated lead levels (for example, living in housing
constructed before 1950 or living in poverty) may have been targeted for
testing. In addition, the media outlet Reuters requested lead test result
data from all states, but not all states reported data to Reuters and thus
we did not have complete coverage of test results for the United States.
In addition, not all states reported data at the ZIP Code level. Also, we
used an area-level model because individual-level data were unavailable.

5. Conclusions

In conclusion, we have used independent lead test result data across
many states and Bayesian index models to estimate lead exposure risk
for all populated ZIP Codes in the United States. Our method is an im-
provement over an existing lead exposure risk score for small areas in
7

the United States. Further, the Bayesian modeling approach is better
for identifying ZIP Codes for targeted intervention to reduce lead
exposure among children.More efficient allocation of resources for pre-
vention of elevated blood lead cases can be accomplished through advo-
cacy to target geographic clusters of neighborhoods with elevated risk.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.145237.
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