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a b s t r a c t 

Lead exposure adversely affects children’s health. Exposure in the United States is highest among so- 

cioeconomically disadvantaged individuals who disproportionately live in substandard housing. We used 

Bayesian binomial regression models to estimate a neighborhood deprivation index and its association 

with elevated blood lead level (EBLL) risk using blood lead level testing data in Maryland census tracts. 

Our results show the probability of EBLL was spatially structured with high values in Baltimore city and 

low values in the District of Columbia suburbs and Baltimore suburbs. The association between the neigh- 

borhood deprivation index and EBLL risk was statistically significant after accounting for spatial depen- 

dence in probability of EBLL. The percent of houses built before 1940, African Americans, and renter 

occupied housing were the most important variables in the index. Bayesian models provide a flexible 

one-step approach to modeling risk associated with neighborhood deprivation while accounting for spa- 

tially structured and unstructured heterogeneity in risk. 

© 2019 Elsevier Ltd. All rights reserved. 
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i An update to this article is included at the end
. Introduction 

Environmental lead exposure has been linked to numer-

us adverse health effects in children, especially neurolog-

cal and neurobehavioral deficits such as lower IQ, slowed

rowth, and anemia ( Agency for Toxic Substances and Dis-

ase Registry (ATSDR) 2007; Canfield et al., 2003; Chiodo

t al., 2004; Grandjean and Landrigan, 2014; Lanphear

t al., 20 0 0; Lidsky and Schneider, 20 03; Mielke et al., 1997;

ielke et al., 2017; Mielke et al., 2016; Miranda et al., 2007;

elson et al., 2015; Schnaas et al., 20 0 0; Tellez-Rojo et al., 2006 ).

uring 2007–2010, an estimated 535,000 children aged 1–5 years

n the U.S. had elevated blood lead levels (EBLLs) ( Centers for

isease Control and Prevention (CDC) 2013 ). The U.S. Centers

or Disease Control and Prevention recommends reducing future

ead exposure for children with blood lead levels (BLLs) at or

bove 5 mcg/dL ( Centers for Disease Control and Prevention (CDC)

012; Wengrovitz and Brown, 2009 ). Though remediation and

ehabilitation of lead contaminated areas is possible and has

een demonstrated in European countries ( Remediated sites and
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rownfields: Success stories in Europe 2015 ) and some U.S. cities

 Staes et al., 1994; Leighton et al., 2003; Triantafyllidou et al.,

014; Schoof et al., 2016 ), it is unlikely that the Healthy People

020 objective to reduce BLLs to an average of 1.6 mcg/dL will

e achieved in the U.S. in the near future ( Centers for Disease

ontrol and Prevention (CDC) 2004; US Department of Health

nd Human Services 2012 ). Inadequate identification of lead

azards and limited governmental funds to sponsor remediation

rograms reduce efforts to prevent lead poisoning ( Letter from

ational Safe and Healthy Housing Coalition to Members of

ongress 2019; Center for American Progress 2016 ). While there

re target maps for lead testing or lead remediation for some

.S. cities ( Philadelphia Citizens for Children and Youth 2006;

aryland Department of Health and Mental Hygiene 2004; Mary-

and Department of Health and Mental Hygiene 2015 ), the cost of

ffective remediation, particularly in historically underserved and

ow-resourced areas, impacts harm reduction efforts ( Lead-based

aint Hazard Reduction and Financing Task Force 1995; Sampson

nd Winter, 2016 ). Further, there is difficulty in identifying specific

omes where to target lead remediation and prevention effort s

ecause it is not feasible to obtain blood from children or direct

easurements of environmental exposures in a population-based

anner ( Lanphear et al., 1996 b; Mielke et al., 2007 ). Previous

esearch suggests older housing stock and poverty are correlated
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with childhood lead exposure ( Jacobs et al., 2002; Raymond et al.,

2014 ). Therefore, targeted efforts have relied upon proxy measures

for lead exposure such as the age of housing stock, interpolat-

ing environmental emissions, sampling soil and drinking water

or demographic composition of neighborhoods ( Lanphear et al.,

1996 b; Gleason et al., 2019; Lanphear et al., 1996 a; Mielke et al.,

2013; Moody and Grady, 2017 ). BLL testing practices to identify

areas of potential EBLL are dubious, as BLL testing is not spatially

homogeneous because testing has been focused in poor commu-

nities or among disadvantaged populations (e.g., those enrolled in

Medicaid) ( Wengrovitz and Brown, 2009; Maryland Department of

Health and Mental Hygiene 2015 ). Thus, new statistical methods

to enhance the predictive power of these proxy measures that

incorporate the social, structural, and spatial determinants of BLLs

are needed. 

Recent efforts to identify areas with likely EBLL have used cen-

sus data for various types of areal units (e.g., block groups, cen-

sus tracts, ZIP Codes) ( Aelion et al., 2013; Boutwell et al., 2016;

Hanna-Attisha et al., 2016; Krieger et al., 2003 ). In 2016, Vox pub-

lished an online interactive map of lead exposure risk across cen-

sus tracts in the U.S. ( Vox 2016 ). The Vox method calculated a

score by weighting the proportion of the population living below

the federal poverty level and the age of the housing stock. How-

ever, it ignored many other area-level variables that have been as-

sociated with EBLLs and may therefore have classified some areas

of high risk as low risk for EBLLs ( Moody and Grady, 2017; Car-

rel et al., 2017; Jones et al., 2010 ). We recently used a Poisson

weighted quantile sum (WQS) regression approach to estimate a

socioeconomic status (SES) index for census tracts in Minnesota

and compared it with the Vox lead exposure risk score and a con-

centrated disadvantage index constructed with principal compo-

nents analysis (PCA) to identify the best measure for explaining

EBLL risk ( Wheeler et al., 2019 ). WQS regression models are de-

signed to accommodate correlated data when estimating an index

and can perform dimension reduction ( Carrico et al., 2015 ). WQS

models estimate both the effect of an index on a health outcome

and the corresponding weights for each variable included in that

index, and will estimate weights that are effectively zero for vari-

ables statistically unrelated to the health outcome ( Carrico et al.,

2015 ). WQS models do not have the limitation of PCA-based in-

dices, which are constructed based on the correlation or covaria-

tion pattern among the area-level variables without consideration

of the relationship between these variables and the health out-

come of interest. The PCA approach can result in indices that may

include variables that are not associated with an outcome variable

and therefore may also not correctly identify all areas at high risk

for EBLLs. In addition, the interpretation of the PCA-based indices

is more challenging than with WQS, where each SES variable has

an estimated weight in the index. Our WQS index was able to ex-

plain variation in EBLLs across Minnesota and identify important

SES variables for lead exposure above and beyond other SES-based

approaches ( Wheeler et al., 2019 ). Among the most important vari-

ables in the index were percent of houses built prior to 1940,

percent renter occupied housing, percent unemployed, and per-

cent African American population. These findings align with pre-

vious studies addressing the geographic distribution of lead toxic-

ity ( Gleason et al., 2019; Lanphear et al., 1996 a; Moody and Grady,

2017; Lanphear et al., 2002 ), however, prior studies have not ad-

justed for spatial autocorrelation in their modeling approaches nor

have they quantified the individual contributions of each SES com-

ponent like the WQS method ( Akkus and Ozdenerol, 2014; Grif-

fith et al., 1998; Haley and Talbot, 2004; Hanchette, 2008; Miranda

et al., 2002; Oyana and Margai, 2007 ). 

Despite the superior performance of the WQS model approach

for explaining EBLL risk with an SES index versus the Vox and PCA

approaches, we did not adjust for residual confounding or spatial
ependence in the outcome beyond what was explained by the SES

ndex. Residual spatial correlation can cause biased parameter esti-

ates for SES variables, which creates issues with the inference on

elationships with the outcome ( Waller and Gotway, 2004 ). Resid-

al confounding that is not spatially structured, in other words

s spatially random, can also create biased parameter estimates

 Waller and Gotway, 2004 ). In addition, the WQS regression anal-

sis did not include an approach to identify areas of significantly

levated risk. Given the limitations of existing methods for esti-

ating SES indices, including WQS regression, our objective was

o estimate an SES index while accounting for spatially structured

nd unstructured residual confounding using Bayesian regression

odels to explain variation in EBLL risk among census tracts in

aryland. In addition, we wanted to identify census tracts that

ad statistically elevated risk for EBLL to better geographically tar-

et public health intervention effort s. The identification of impor-

ant variables in the SES index and areas of potentially elevated

isk is of particular importance when blood lead testing data are

navailable. 

. Methods 

.1. Study design 

We assessed the association between various potential indica-

ors of BLL risk and risk of EBLL across 1208 census tracts in Mary-

and from 2005–2015 using an ecological design. We used cen-

us tract boundaries based on the 20 0 0 U.S. Census in order to

nclude instances of EBLL prior to 2010. We selected Maryland

or this study because the statewide recommendation to perform

hildhood lead testing was similar to most states ( Safer Chemi-

als Heathier Families 2017 ), the Maryland Department of Health

as high lead surveillance reporting standards ( Maryland Depart-

ent of Health and Mental Hygiene 2015; Maryland Department of

ealth and Mental Hygiene 2017 ), and the data were publicly avail-

ble ( Maryland Open Data Portal 2018; Pell and Schneyer, 2017 ). 

.2. Data 

Blood Lead Levels. Given the Centers for Disease Control and Pre-

ention recommended age range for EBLL testing ( Centers for Dis-

ase Control and Prevention (CDC) 2019 ), we obtained the counts

nd proportions of EBLL tests ( ≥ 5mcg/dL) among children less

han 72 months in age who had BLL tests performed in Maryland

uring 2005–2015 from Reuters (personal communication). These

ata were originally provided by the Maryland Department of the

nvironment under the Public Information Act (tracking number

016–67,777) ( Pell and Schneyer, 2017; Occupational, Industrial,

nd Residential Hazards: Blood Lead Reporting 2018 ). Our analy-

es are limited to one sample per child. It is important to note

hat lead testing was not universal in Maryland until 2016 and that

hildren with risk factors for lead exposure (such as those living in

re-1950 housing, lower median housing values, and families living

n poverty) were targeted for testing during 2005–2015. However,

ll blood lead tests performed in Maryland are mandatory to be

eported to the Maryland Department of Health ( Occupational, In-

ustrial, and Residential Hazards: Blood Lead Reporting 2018 ), thus

he samples included in the analysis are representative of all blood

ead testing conducted throughout the state. BLL test and corre-

ponding census data were unavailable for 12 census tracts (each

as a population count of 0 persons) and these tracts were there-

ore excluded from the analysis, leaving 1208 census tracts with

otential BLLs. A descriptive summary of the number of children

ested, number of elevated tests, and the proportion of elevated

ests is listed in Table 1 . Notably, the range of proportion tested

hat had elevated blood lead levels ranged from 0.00–0.52. These
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Fig. 1. Number of children tested, number of elevated tests, and the proportion of elevated tests across the census tracts in Maryland. 

Table 1 

Summary of the number of children tested, number of elevated tests, and 

the proportion of elevated tests across the census tracts in Maryland. 

Total Tested Total Elevated Proportion Elevated 

Minimum 5 0 0.000 

First Quartile 478 12 0.018 

Median 745 23 0.029 

Mean 871 47 0.053 

Third Quartile 1112 46 0.056 

Maximum 4094 881 0.519 
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hree variables are mapped in Fig. 1 and the pattern of the number

f children tested is quite different from the pattern of the pro-

ortion of the tests that are elevated. Further details regarding all

spects of data collection and reporting of lead exposure in Mary-

and are available elsewhere ( Maryland Department of Health and

ental Hygiene 2015; Maryland Department of Health and Mental

ygiene 2017 ). 

SES Covariates. We used the 5-year estimates from the 2005–

009 American Community Survey (ACS) to obtain SES-related

ariables at the census tract level when estimating the SES index

 U.S. Census Bureau. American Community Survey 2017 ). We se-

ected these variables based on the variables previously used in

n SES index for EBLL risk, ( Wheeler et al., 2019 ) as well as vari-

bles that have appeared to be associated with BLLs in the liter-

ture (e.g., housing age, poverty, and race/ethnicity) ( Bernard and

cGeehin, 2003; Cureton, 2011; Davis et al., 2016; Elreedy et al.,

999; Nriagu et al., 2006; Tyrrell et al., 2013 ). The SES variables

re described below and listed in Table 2 . 

.3. Statistical modeling 

We used Bayesian regression models for the proportion of

ested children that had EBLLs, assuming that the census tract EBLL

ount y i ∼ Binomial ( p i , n i ) with probability p i and number of chil-

ren tested n i . We modeled the proportion of tests that were ele-

ated instead of the rate of elevated tests due to an unequal pro-
ortion of children tested over space. The Maryland Department

f Health (MDH) has target areas for testing based on a predicted

umber of children that will test as elevated for blood lead, and

herefore more populated areas will be more likely to have tests

erformed ( Maryland Department of Health and Mental Hygiene

015 ). We condition on the number of tests in an area and not

he number of children living in an area, which avoids bias that

ould result from a model of the rate of elevated cases among all

hildren living in each area. We used a logistic link between the

robability and model terms. In all candidate models, we specified

 deprivation index for each tract using a weighted combination
 C 
j=1 w j q j of the quantiles q 1 , . . . , q C of the SES variables x 1 , . . . , x C ,

here the weights w 1 , . . . , w C were given a Dirichlet prior with pa-

ameters α = ( α1 , . . . , αC ) . The Dirichlet prior is convenient here

ecause it assures that the SES variable weights w j ∈ (0, 1) and
 C 
j=1 w j = 1 . We used quantiles of the SES variables to account

or different scales of the variables, limit the effect of outliers, de-

orrelate the variables, and acknowledge uncertainty in the ACS

ovariates. Previous work has shown an improvement in accuracy

ith a weighted quantile sum approach over traditional ordinary

egression and shrinkage methods (lasso, adaptive lasso, and elas-

ic net) when using correlated explanatory variables ( Carrico et al.,

015; Czarnota et al., 2015 ). The weight w j represents the relative

mportance of the j th SES variable in the index. 

We considered the following candidate models for modeling

BLL risk: 

ogit ( p i ) = β0 + β1 

( 

C ∑ 

j=1 

w j q i j 

) 

, (1) 

ogit ( p i ) = β0 + β1 

( 

C ∑ 

j=1 

w j q i j 

) 

+ u i , (2)

ogit ( p i ) = β0 + β1 

( 

C ∑ 

j=1 

w j q i j 

) 

+ v i , (3)
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Table 2 

ACS census tract variables used in the neighborhood deprivation index 

models. 

Variable Definitions a Mean ± SD Range 

Household Gini index of income 

inequality 

0.4 ± 0.06 0.2–0.7 

Percent of the population that is 

African-American 

31.1 ± 32.1 0–100 

Percent female headed households 

with children present 

13.1 ± 10.9 0–73.3 

Percent of population aged ≥ 25 

years with less than high school 

education 

14.2 ± 10.5 0–79.3 

Percent of households with 

income below federal poverty 

level in the past 12 months 

9.8 ± 10.1 0–91.0 

Percent of households receiving 

public assistance income in the 

past 12 months 

2.2 ± 3.1 0–25.3 

Percent of households receiving 

cash public assistance or food 

stamps/SNAP 

7.0 ± 7.7 0–48.3 

Percent of unemployed population 

aged 16 years and over 

18.9 ± 8.8 0–88.8 

Percent of vacant housing units 9.3 ± 9.8 0–85.7 

Percent of renter occupied 

housing units 

31.7 ± 23.5 0–100 

Median household income (U.S. 

Dollars) in the past 12 months b 
71,473 ± 32,941 8789–250,001 

Percent of households receiving 

Social Security Income in the 

past 12 months 

24.9 ± 9.9 0–80.7 

Percent of housing units built in 

1939 or earlier 

15.0 ± 18.5 0–88.8 

Percent of housing units built 

from 1940–1949 

8.1 ± 8.9 0–53.4 

a Estimates were obtained from the 5-year estimates of the 20 05–20 09 

American Community Survey conducted by the U.S. Census Bureau; SNAP, 

Supplemental Nutritional Assistance Program. 
b Median household income was inverted for the index analyses. 
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4  
logit ( p i ) = β0 + β1 

( 

C ∑ 

j=1 

w j q i j 

) 

+ u i + v i , (4)

logit ( p i ) = β0 + β1 

( 

C ∑ 

j=1 

w j q i j 

) 

+ αi u i + ( 1 − αi ) v i , (5)

where β0 is the intercept, β1 is the effect for the index, u i and v i 
are tract level random effects, and αi is a mixing parameter. The

first model is the base index model, the second model includes

unstructured tract-level random effects, the third model adds spa-

tially structured tract-level random effects to the base model,

the fourth model adds both unstructured and spatially structured

tract-level random effects (convolution model), and the fifth is a

convolution mixture model with a mixing parameter on the un-

structured random effect and the spatially structured random ef-

fect. In model 2, the heterogeneity in EBLL risk not explained by

the deprivation index is assumed to be random over space, while

in model 3 it is assumed to be spatially correlated. In model 4, it

can be both spatially correlated and random over space. In model

5, the mixing parameter is estimated to allow the data to in-

form on the nature of the heterogeneity in EBLL risk. The uncor-

related random effects model (model 2) is used as a comparison

to explore the assumption of spatial dependence in the data. The

choice of the convolution model (model 4) is motivated by possible

spatial correlation in EBLL risk in Maryland. Model 5 is included

to allow the influence of the unstructured and spatially struc-

tured random effects to fluctuate through the addition of the mix-

ing parameter. The models are not adjusted for child age because
he exact age of tested children is not reported in the publically

vailable data. 

The assumption of spatial correlation in tract effects was imple-

ented through an intrinsic conditional autoregressive (ICAR) prior

 Waller and Gotway, 2004 ), where each random effect has the

onditional distribution given by v i | v −i ∼ Normal( ̄v l , 1 / τv δi ) with

¯
 l = 

∑ 

j in ω i 
v j / δi , where δi represents the number of neighbors

n set ω i and precision τv = 1 / σ 2 
v and σ v ∼ Uniform (0, 100).

e defined spatial structure using binary neighborhood weight-

ng and queen contiguity. The prior for the unstructured ran-

om effects was u i ∼ Normal (0, τ u ) with precision τu = 1 / σ 2 
u and

u ∼ Uniform (0, 100). The mixing parameter αi followed a Beta (1,

) prior. The intercept followed an improper uniform distribu-

ion α ∼ dflat (), while the index regression coefficient had a vague

ormal prior β1 ∼ Normal (0, τ 1 ) with precision τ1 = 1 / σ 2 
1 

and

1 ∼ Uniform (0, 100). 

We used C = 14 variables in the SES index, which are listed in

able 2 . The variables were defined to reflect a hypothesized pos-

tive association of the index with EBLL risk. Of the ACS variables,

3 had a positive association with EBLL counts in univariate analy-

es. Median household income was the only variable that was neg-

tively associated with EBLL counts. We inverted this variable by

sing the formula max (x ) − x i , where x i is the value of the vari-

ble, and used this inverted form in the deprivation index. 

We used Markov chain Monte Carlo (MCMC) to estimate the

odel parameters with a total of 30,0 0 0 iterations from two chains

nd a thinning parameter of one, where the first 50 0 0 iterations

ere used for burn-in. We assessed convergence of the MCMC al-

orithm for parameters of interest using the Gelman-Rubin statis-

ic. A parameter was considered to have converged if its Gelman-

ubin statistic was less than 1.2 ( Lunn et al., 20 0 0 ). Among the five

andidate models, the one with the lowest deviance information

riterion (DIC) was chosen as the best model ( Lunn et al., 20 0 0 ).

he 95% credible interval for the odds ratio was used to determine

tatistical significance of the deprivation index; it was deemed sta-

istically significant if the interval did not contain the value of

. We fit the Bayesian models using WinBUGS1.4.1 ( Lunn et al.,

0 0 0 ) and completed all other analyses in the R computing envi-

onment ( R: A language and environment for statistical computing

018 ). 

We identified census tracts as being significantly elevated for

BLL risk using posterior estimates of exceedance probabilities

 Richardson et al., 2004 ), defined as ˆ q c 
i 

= 

∑ m + G 
g= m +1 

I(p 
(g) 
i 

>c) 

G , where m

epresents the burn-in (50 0 0 iterations) and G represents the num-

er of posterior samples after the burn-in (30,0 0 0 iterations). The

verall mean probability c = 0 . 053 was used as a threshold value

or p i . Counties with an exceedance probability ( ̂  q c 
i 
) greater than

.99 were deemed to have highly significant elevated risk of EBLL. 

. Results 

The declining DIC values show that there was a steady improve-

ent in goodness-of-fit going from model 1 to model 5 ( Table 3 ).

here was a dramatic increase in the goodness-of-fit of models 2–

 when adding tract-level random effects to the base deprivation

ndex model (model 1). Even though the effective number of pa-

ameters increased substantially from the base model according to

he pD statistic, the decrease in deviance much exceeded the in-

rease in model complexity, resulting in improved fit. The addition

f spatial random effects (model 3) lead to a better fit than in-

ependent random effects (model 2). Hence, the unexplained risk

n EBLL after estimating the deprivation index was more spatially

tructured than spatially random. Adding independent random ef-

ects to the model with spatially correlated random effects (model

) resulted in a small decrease in DIC from 8054 to 8050. Adding
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Table 3 

Deviance information criterion (DIC) and effective number of parameter (pD) values for candidate 

Bayesian binomial regression models and posterior mean odds ratio (OR) and 95% credible intervals 

for the neighborhood deprivation index. 

Model Description DIC pD Index OR 2.50% 97.50% 

1 Base index 22,850.10 12.06 3.86 3.80 3.91 

2 Independent random effects 8163.23 983.68 2.82 2.67 3.00 

3 Spatial random effects 8053.58 834.34 1.58 1.47 1.66 

4 Convolution 8050.44 848.97 1.60 1.52 1.70 

5 Convolution mixture 7790.40 594.61 1.80 1.69 1.92 
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Table 4 

Posterior mean weights and 95% credible intervals for variables in the 

neighborhood deprivation index. 

Variable a Mean 2.50% 97.50% 

Household Gini index of income 

inequality 

0.018 0.001 0.052 

Percent of the population that is 

African-American 

0.154 0.083 0.224 

Percent female headed households 

with children present 

0.025 0.002 0.083 

Percent of population aged ≥ 25 years 

with less than high school 

education 

0.047 0.003 0.136 

Percent of households with income 

below federal poverty level in the 

past 12 months 

0.021 0.002 0.068 

Percent of households receiving public 

assistance income 

0.029 0.002 0.085 

Percent of households receiving cash 

public assistance or food 

stamps/SNAP 

0.028 0.002 0.064 

Percent of unemployed population 

aged 16 years and over 

0.052 0.008 0.106 

Percent of vacant housing units 0.047 0.006 0.096 

Percent of renter occupied housing 

units 

0.013 0.001 0.039 

Inverse median household income in 

the past 12 months b 
0.105 0.028 0.191 

Percent of households receiving Social 

Security Income in past 12 months 

0.050 0.002 0.098 

Percent of housing units built in 1939 

or earlier 

0.395 0.332 0.461 

Percent of housing units built from 

1940–1949 

0.016 0.001 0.051 

a Estimates were obtained from the 5-year estimates of the 20 05–20 09 

American Community Survey conducted by the U.S. Census Bureau; SNAP, 

Supplemental Nutritional Assistance Program. 
b Median household income was inverted for the index analyses. 
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t  
 mixing parameter to the convolution model (model 5) resulted

n a large decrease in DIC from 8050 to 7790, revealing that the

exibility in modeling residual confounding provided by the con-

olution mixture model was beneficial. Hence, the most complex

odel had the best goodness-of-fit and was the most useful for

xplaining variation in EBLL risk. 

In all models, there was a significant positive association be-

ween the deprivation index and EBLL risk according to the odds

atios (ORs) and 95% credible intervals ( Table 3 ). In the base model,

here was a nearly 4-fold increase in EBLL risk with each one-

nit increase in the deprivation index. The odds ratio decreased

rom the base index model when adding tract-level random effects

models 2–5), but decreased more when adding spatial random ef-

ects (model 3), suggesting that the spatially correlated random ef-

ects explained a portion of the effect of the spatially structured

eprivation index. Yet even after accounting for spatially structured

nd unstructured residual confounding, in the best fitting model

model 5) there was an 80% increase in EBLL risk with each unit

ncrease in the index, revealing a strong positive association be-

ween neighborhood disadvantage and EBLL risk. 

Given the DIC findings, we focus on the mixture convolution

odel (model 5) for the remainder of the results. The estimated

eights for the variables in the deprivation index ( Table 4 ) for

he best fitting model (model 5) show that three of the 14 vari-

bles received weights greater than the equal-weight threshold of

.071 (1/14). These most highly weighted variables in decreasing

mportance were percent of housing units built in 1939 or ear-

ier (weight = 0.395), percent of the population that is African-

merican (weight = 0.154), and median household income in the

ast 12 months (weight = 0.105). The three variables with the

mallest weight ( < 0.02) were percent of renter occupied housing

nits, the Gini index of income inequality, and percent of houses

uilt in the 1940s, suggesting that these variables contributed lit-

le to explaining variation in EBLL risk. 

The modeled EBLL probabilities from the convolution mixture

odel are mapped in Fig. 2 . The mean probability of 0.053 is used

s a reference in the color ramp; blues are below average risk and

eds are above average risk. The pattern shows that the largest

BLL probabilities are in the Baltimore area, where there is a spa-

ial cluster of above average risk. In this cluster, there are tracts

aving an EBLL probability exceeding 0.5 (maximum = 0.52), which

s approximately 10 times the average for Maryland. Conversely,

ome of the smallest probabilities are located in the metropolitan

reas outside Washington, DC, including Montgomery County, MD

hich is among the wealthiest counties in the U.S. Areas of above

verage risk also tend to occur in the more rural census tracts in

outheastern and northwestern Maryland ( Morello, 2013 ). The es-

imated deprivation index in Fig. 3 shows that the largest values

f the index are also in Baltimore, as well as in southeastern and

orthwestern Maryland. In contrast, areas of Montgomery County

ave the lowest deprivation index values. It is clear that there is

patial agreement between the deprivation index and the probabil-

ty of EBLL. Generally, higher deprivation index scores occur where

here are higher EBLL probabilities. 
The estimated spatial random effects ( Fig. 4 ) and exchange-

ble random effects ( Fig. 5 ) show the adjustments to the tract

robability of EBLL beyond what the deprivation index explains.

he reference value in these maps is 0. The spatial random ef-

ects show a cluster of elevated values in Baltimore, and gener-

lly elevated values in northwestern and southeastern Maryland.

here is a cluster of lowered values in Montgomery County and

rince George’s County. As expected, there is no clear pattern

n the independent random effects that represent spatially un-

tructured residual confounding. The convolution mixing param-

ter main and inset maps ( Fig. 6 ) show where more weight is

iven to the spatial random effects than the independent ran-

om effects. The reference for these maps is 0.5 for equal weight

f the random effects. Areas shaded in red are where more

eight is given to the spatial random effect than the indepen-

ent random effect. The largest weights are generally found in

he Baltimore metropolitan area. This is reasonable given the

trong clustering of elevated values of the EBLL probabilities in

his geographic area ( Fig. 2 ). The exceedance probabilities ( Fig. 7 )
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Fig. 2. Estimated probability of elevated blood lead level in census tracts in Maryland with county lines drawn for reference. The inset map is focused on Baltimore. 

Montgomery County, Prince George’s County, Washington County, and Baltimore are labeled. 

Fig. 3. Estimated neighborhood deprivation index for elevated blood lead levels in census tracts in Maryland with county lines drawn for reference. The inset map is focused 

on Baltimore. Montgomery County, Prince George’s County, Washington County, and Baltimore are labeled. 

Fig. 4. Estimated spatial random effects ( v ) for elevated blood lead levels in census tracts in Maryland with county lines drawn for reference. The inset map is focused on 

Baltimore. Montgomery County, Prince George’s County, Washington County, and Baltimore are labeled. 
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i  

f  

E  
reveal several tracts of highly significantly elevated risk of EBLL.

There is a large cluster in Baltimore city. There is also a large

cluster of tracts located in northwestern Maryland in Washing-

ton County that includes the city of Hagerstown. There are also

several tracts of elevated risk along the eastern border of Mary-

land. 
. Discussion 

This study estimated the effect of a neighborhood deprivation

ndex while accounting for spatial dependence and residual con-

ounding using Bayesian regression models to explain variation in

BLL risk among children in Maryland census tracts. In the best
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Fig. 5. Estimated independent random effects ( u ) for elevated blood lead levels in census tracts in Maryland with county lines drawn for reference. The inset map is focused 

on Baltimore. Montgomery County, Prince George’s County, Washington County, and Baltimore are labeled. 

Fig. 6. Estimated convolution mixture parameter for elevated blood lead levels in census tracts in Maryland with county lines drawn for reference. The inset map is focused 

on Baltimore. Montgomery County, Prince George’s County, Washington County, and Baltimore are labeled. 

Fig. 7. Census tracts at significant risk for elevated blood lead levels according to exceedance probabilities in Maryland with county lines drawn for reference. The inset map 

is focused on Baltimore. Montgomery County, Prince George’s County, Washington County, and Baltimore are labeled. 
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tting model, the most important SES variables were percent of

omes built before 1940, percent of African American population,

nd inverse median household income. In our previous WQS anal-

sis of EBLLs among Minnesota census tracts, percent of homes

uilt before 1940 and percent African American population were

wo of the most important variables but median household income
eceived no weight ( Wheeler et al., 2019 ). In the current study and

he Minnesota study, percent of homes built before 1940 was the

ost important variable. Previous research also has found that age

f housing stock and poverty are correlated with lead exposure

mong children ( Jacobs et al., 2002; Raymond et al., 2014 ). Taken

ogether, there is strong evidence that areas with a high percentage
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of homes built before 1940 and a larger African American popula-

tion, and to a lesser extent areas of low income or high poverty,

should be targeted for lead intervention efforts. These findings

have implications for state and local public health agencies as they

consider targeted testing and risk reduction activities and/or mes-

saging. 

This study illustrates the utility of Bayesian hierarchical mod-

eling for estimating a neighborhood deprivation index to explain

variation in EBLL risk. It is beneficial to estimate the index weights

from the data through the Bayesian modeling approach instead of

assigning a priori weights to potential risk factors such as with

the Vox score or summed z-score index approaches, whose mea-

sures are not likely to capture the complexity of SES across all ge-

ographic areas. Contrary to the common equal weighting assump-

tion in the summed z-score approach, we found strong deviations

in weighting of the SES variables in our estimated deprivation in-

dex. Also, the Bayesian approach eliminates the need to split the

data into training and testing datasets as done in WQS regression;

thus, all data are used to evaluate the association of the depriva-

tion index with the health outcome. Moreover, the Bayesian frame-

work flexibly allows a model specification that includes residual

confounding that is either spatially structured or unstructured, or

a mixture of both. For Maryland EBLL risk, adding spatially struc-

tured random effects led to improvements in model fit, show-

ing that there was significant unexplained risk not accounted for

by the estimated deprivation index. However, even in the most

complex mixture model of spatially structured and unstructured

random effects, the deprivation index was significantly associated

with EBLL risk. 

One benefit of the Bayesian modeling approach is the ability to

easily identify areas of significantly elevated risk using exceedance

probabilities. We identified many census tracts of significantly ele-

vated EBLL risk in northern and southeastern Maryland, including

a large cluster that includes the city of Hagerstown and a large

cluster in Baltimore city ( Fig. 7 ). The tracts in the Baltimore clus-

ter have very high EBLL risk and consistently have the largest de-

privation index values. This is not unexpected as the residential

segregation index for Baltimore City suggests extremely high seg-

regation and segregation is related to economic deprivation and

health outcomes ( Robert Wood Johnson Foundation 2018; Williams

and Collins, 2001 ). This indicates that structural disparities, above

and beyond economics, are linked to environmental hazards and

poor health outcomes at the census tract level ( Sampson and Win-

ter, 2016 ). The percent of minority population is lower in Washing-

ton County but many of tracts in the cluster have deprivation in-

dex values in the upper half of the distribution. The spatial random

effects are elevated in both of these cluster areas suggesting that

there are other factors in addition to the deprivation index con-

tributing to elevated EBLL risk. In addition to lead paint and lead-

contaminated household dust that children can ingest, lead expo-

sure can be high given leaching from old pipes, faucets, etc. into

drinking water; soil and water contamination from historic and/or

current industrial sites (e.g., smelting sites and mining) ( Agency

for Toxic Substances and Disease Registry (ATSDR) 2017; Dewalt

et al., 2015; President’s Task Force on Environmental Health Risks

and Safety Risks to Children 2019; Scott and Nguyen, 2011; U.S.

Environmental Protection Agency (EPA) 2019 ). Also, inner city soil

and areas along heavily traveled interstate highways may still have

high lead levels from accumulation prior to the total ban on leaded

gasoline in 1995 ( Agency for Toxic Substances and Disease Registry

(ATSDR) 2017; Scott and Nguyen, 2011; Brinkmann, 1994 ). More-

over, remediation efforts may be uneven over space given that the

expense of comprehensive abatement can be greater than the fair

market value of older housing stock in more disadvantaged neigh-

borhoods. However, it is estimated that lead abatement and con-

trol yields $17-$221 return on investment for each dollar spent,
hich would equate to a net savings of $181–$269 billion in the

.S ( Gould, 2009 ). 

Our analysis is different from and adds to the findings of the

015 report Maryland Targeting Plan for Areas at Risk for Child-

ood Lead Poisoning from the MDH ( Maryland Department of

ealth and Mental Hygiene 2015 ). The MDH report used 2005–

009 data while we used 2005–2015 data. We also used a smaller

patial unit of analysis, the census tract instead of ZIP Code. In

ddition, our methods are different from what MDH used to de-

ermine “at-risk” areas, which are based on a predicted number

f children that will test as elevated for blood lead. These “at-

isk” areas are not true measures of risk or probability of dis-

ase. Our Bayesian hierarchical models estimate disease risk and

re based on the number of tests performed and the proportion of

levated cases in each census tract. We also account for spatial de-

endence in EBLL risk and determine which SES variables among

 large set are associated with risk. Because of the differences in

ata and methods, our results highlight smaller areas of signifi-

ant elevated risk compared with the larger MDH “at-risk” areas.

or example, we find much smaller areas in northwest and east-

rn Maryland compared with the MDH “at-risk” areas. This means

ur results enable more precise spatial targeting for interventions.

e also do not identify any tracts as being significantly elevated in

isk in Montgomery County or in Prince George’s County bordering

ashington, DC. These are highly populated areas that show up

s “at-risk” areas in the MDH map (see page A-2 of MDH report)

 Maryland Department of Health and Mental Hygiene 2015 ). 

Study findings should be considered in the context of its limi-

ations. First, we used an ecological model because individual-level

ovariate data were unavailable. However, the ecological approach

llowed us to identify areas of elevated EBLL risk. Second, Mary-

and did not mandate BLL testing for children until 2016; thus, ar-

as thought to be at high-risk may have had a higher proportion of

ll children tested. However, our Bayesian hierarchical models are

ased on the number of tests done and the proportion of elevated

ases in each area and not the number of children living in each

rea. Therefore, our EBLL risk estimates are less biased than EBLL

ates using these data. Third, our deprivation index results may not

eneralize to other geographic units such as ZIP Codes or counties

nd to all states beyond Maryland. 

In conclusion, the Bayesian deprivation index model approach

ccounting for spatially structured residual confounding better ex-

lains variation in rates of EBLL at the census tract level than a

tandard WQS regression. Further, the Bayesian modeling approach

s better for identifying census tracts for targeted intervention to

educe lead exposure among children. More efficient allocation of

esources for prevention of EBLLs can be attained through advo-

acy to target clusters of neighborhoods with significantly elevated

isk. 
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